
Lecture 08

1. Review

Prolongation of diffeomorphisms. A local diffromorphism g : X × U → X × U
induces prng : X×U (n) → X×U (n), which is defined as follows. Take any function
u = f(x) such that u(n)(x) = f (n)(x). Then transform this by g 1 to get new
function ũ = f̃(x̃) for which we let f̃ =: g ◦ f . Now we define the image of (x, u(n))
under prng is (x̃, f̃ (n)(x̃)).
For V a vector field on X×U , prnV is a vector field on X×U (n) defined as follows.
Let gε := exp(εV ) which is a local diffeomorphism of X×U . Then prngε(x, u(n)) is
a curve in X×U (n) parametrized by ε. We identify prnV with d

dε

∣∣
ε=0

prngε(x, u(n)).
Symmetries of differential equations. Given a system of partial differential equa-

tions ∆(x, u(n)) = 0 with ∆ = (∆1, . . . ,∆l) and S∆ the zero set of ∆, a symmetry
g refers to a diffeomorphism X × U to itself such that prng : S∆ → S∆.

Remark 1.1. Note this definition is different from saying prng sends a solution
to another solution. For a certain class of differential equations has the solution at
every point of S∆. But some differential equation e.g. over-determined system of
differential equation has the solution only at some points of S∆.

If g is such a diffeomorphism and if u = f(x) is a solution of ∆ = 0 then
ũ = (g ◦ f)(x̃) is also a solution of ∆ = 0. In fact, let f be a solution then
(x, f (n)(x)) ∈ S∆ for all x ∈ X. Now (x̃, f̃ (n)(x̃)) = prng(x, f (n)(x)) ∈ S∆. Hence
ũ = f̃(x̃) is a solution. This justifies why we call g a symmetry of ∆ = 0.

2. Infinitesimal symmetries

Infinitesimal symmetries. We look for vector fields V on X×U such that prnV
is tangent to S∆ ⊂ X ×U (n). Such V is called an infinitesimal symmetry of ∆ = 0.

Remark 2.1. The space of infinitesimal symmetries is essentially equivalent to
the local symmetric group of identity component. If one is finite dimensional so is
the other and vice versa. But the infinitesimal symmetries are preferred since it
admits concrete calculation many times.

Note (prnV )∆ = 0 on ∆ = 0 if and only if (prnV )∆ =
∑q

i=1 Qi · ∆i for some
differential function Qi(x, u(n)).

Properties of prn: prolongation of vector fields. Let X (·) denote the space of
smooth vector fields defined locally on the given manifold. prn is a map X (X×U) →
X (X × U (n)) such that

(1) prn(aV + bW ) = aprnV + bprnW
(2) prn[V,W ] = [prnV, prnW ]

for constants a, b and local smooth vector fields V , W . Hence prn is a Lie algebra
homomorphism.

Example 2.2. Let p = q = 1 and u(x) solve ∆(x, u, ux) = (u−x)ux+u+x = 0.
Show SO(2) is a symmetry group.

Solution. Symmetric group itself is difficult to find by calculation whereas in-
finitesimal generators thereof are more calculable. The reason is that they are solved

1We consider the case g is close enough to identity mapping.
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from the linearized differential equations. Once the generator V found, exp(εV )
gives the symmetric group element. In the viewpoint above, we are well enough
to show V = −u ∂

∂x + x ∂
∂u , the generator of SO(2) is an infinitesimal symmetry of

∆ = 0. Recalling pr1V = −u ∂
∂x + x ∂

∂u + (1 + u2
x) ∂

∂ux
, we have

(pr1V )∆ = −u(−ux + 1) + x(ux + 1) + (1 + u2
x)(u− x)

= ux · (u + x + uux − xux)
= ux ·∆

which is 0 on ∆ = 0. ‖
This is how this example was found. An ordinary differential equation

dr

dθ
= r

in polar co-ordinates (r, θ) has the solution r(θ) = r(0) exp(θ) whose graph spirals
out. This obviously solves the same ordinary differential equation after rotation
and so SO(2) is a symmetric group of this ordinary differential equation. We
convert this into (x, u) ∈ R2 co-ordinates by x = r cos θ and u = r sin θ to get
(u− x)ux + u + x = 0.

3. Prolongation formula for vector fields

Theorem 3.1. Let

V =
p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα

be a vector field on X × U . Then

prnV = V +
q∑

α=1

∑
|J|≤n

φJ
α(x, u(n))

∂

∂uα
J

,

where

φJ,k
α = Dk(φJ

α)−
p∑

i=1

(Dkξi)uα
Ji.

The multi index J = (j1 . . . jm), ji = 1 . . . p is understood as unordered, |J | := m
and Jk := (j1 . . . jm k), ji, k = 1 . . . p.

Example 3.2. We verify this formula by the previous example. For p = q = 1,
let V = −u ∂

∂x + x ∂
∂u and pr1V = V + φx ∂

∂ux
. According to the formula above,

φx = Dxφ− ((Dxξ)ux = 1− (−ux)ux = 1 + u2
x the same result as before.

3.1. Derivation of formula for special vector fields.
(1). Let V =

∑p
i=1 ξi(x) ∂

∂xi with q = 1 and exp(εV ) := gε. Let gε · (x, u) =
(x̃, ũ) = (Ξε(x), u) then ∂

∂ε

∣∣
ε=0

Ξi = ξi(x). Put (pr1gε)(x, u(1)) = (x̃, ũ(1)) =
(Ξε(x), u, ũj) where ũj is to find. Let u = f(x) be any function that fits (x, u(1))
and let f̃ε = gε · f be the transformed function which is given by ũ = f̃ε(x̃) =



3. PROLONGATION FORMULA FOR VECTOR FIELDS 3

f(Ξ−1
ε (x̃)) = f( Ξ−ε(x̃). Then ũj = ∂f̃ε

∂x̃j
(x̃) = ∂f

∂xk (Ξ−ε(x̃))·∂ Ξk
−ε

∂x̃j
(x̃) =

∑p
k=1

∂ Ξk
−ε

∂x̃j
(x̃)·

uk and so pr1gε(x, u(1)) = ( Ξε(x), u,
∑p

k=1

∂ Ξk
−ε

∂x̃j
(x̃) · uk).

pr1V =
p∑

i=1

ξi ∂

∂xi
+ 0 · ∂

∂u
+

p∑
k=1

∂

∂x̃j

(
∂

∂ε
Ξk
−ε(x̃)

)
· uk

=
p∑

i=1

ξi ∂

∂xi
+

p∑
k=1

[
−∂ξk

∂x̃j
(x̃) +

p∑
i=1

∂2 Ξk
−ε

∂x̃j∂x̃i
ξi

]
· uk

∣∣∣∣∣
ε=0

=
p∑

i=1

ξi ∂

∂xi
+

p∑
k=1

(
−∂ξk

∂xj
(x)
)
· uk.

Therefore

pr1V = V +
p∑

j=1

(
−

p∑
k=1

∂ξk

∂xj
(x) · uk

)
· ∂

∂uj

where we put φj = −
∑p

k=1
∂ξk

∂xj (x) · uk.

(2). Let V = φ(x, u) ∂
∂u with q = 1 and exp(εV ) =: gε. Set gε(x, u) =

(x, Φε(x, u)). Then ∂Φ
∂ε |ε=0 = φ(x, u). For any function u = f(x) let f̃ε :=

gε · f then ũ = f̃(x̃) = Φε(x, f(x)) and ũj = ∂ũ

∂x̃j
= ∂ũ

∂xj = ∂Φε

∂xj + ∂Φε

∂u
∂f
∂xj . So,

gε(x, u, uj , 1 ≤ j ≤ p) = (x,Φε(x, u), ∂Φε

∂xj + ∂Φε

∂u uj , 1 ≤ j ≤ p), which we differenti-
ate in ε and evaluate at ε = 0 to get

pr1V =
(

0, φ(x, u),
∂φ

∂xj
+

∂φ

∂u
· uj

)
= φ

∂

∂u
+

p∑
j=1

(
∂φ

∂xj
+

∂φ

∂u
· uj

)
∂

∂uj

= φ
∂

∂u
+

p∑
j=1

φj ∂

∂uj

where φj := ∂φ
∂xj + ∂φ

∂uj
.


